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A scheme has been proposed [i, 2] for the growth of a radial crack system formed by ex- 
plosion of a line charge in a brittle medium, and a method has been given for calculating 
the dynamics of such cracks. In approximate calculations in [2], a quasistatic solution was 
used for the state of strain in an elastic plane having a radial system of lines of section 
loaded from within a given load. 

In a confined explosion, the loading pressure from the detonation products in the cavity 
is not known in advance and must be found at the same time as the motion of the medium is de- 
termined and the growth of the radial cracks is established. 

Here we estimate the maximum dimensions of the cracks arising in a confined explosion 
from a line charge in a brittle medium. We envisage cases where the detonation products do 
or do not penetrate into the cracks. Allowa~ce is also made for the rock pressure. A com- 
parison is made of the theory with experiments on explosions in lucite. 

i. Quasistatic Zone Model for the Confined ExPlosion of a Line Charge in a Brittle Med- 
ium. The quasistatic approximation has to be used [3] because there are difficulties in solv- 
ing dynamic problems in the theory of elasticity involving growing cracks. 

We consider the final stage of a confined explosion for a line charge in a brittle med- 
ium. In the explosion cavity of radius ro~ there is a certain pressure p due to the detona- 
tion products. There is a zone of plastic strain ro < r < rl around the cavity, where the 
material is in the plastic or crushed (powder) state as a result of the pressure. Outside the 
plastic zone at r~ < r < Z lies a system of radial cracks, the longest of which are in critical 

equilibrium. 

The rock pressure far from the explosion cavity is given. One has to calculate the 
equilibrium state of this configuration. 

This formulation differs from an earlier one [3] in that there is no zone of columnar 
elasticity. Here the zone of radial cracks together with the remaining elastic space may 
be considered together as a whole. In that approach, the condition for damage in terms of 
the limiting tensile stress for the columnar elasticity zone is replaced by a condition for 
limiting equilibrium in the cracks, which is sounder for a brittle medium. An adiabatic pres- 
sure-variation law is assumed for the gases in the cavity. 

In the calculations, we use the Jones-Miller adiabat [4] for a cylindrical trotyl charge 
in the form 

PO ~ ro < r~, 

P (r~ : -~?l -2?~ (1 .  l )  

Po == t01~ Pa ,  Yl ~ 3, ?2 ~= t .27 ,  ro/roo == 1.89, 

where roo is the initial charge radius and ro is the cavity radius. 

To describe the state of stress in the plastic zone, we follow [4] in taking the Coulomb 
law T = C --~ tan~, where T and ~ are the tangential and normal stresses on a shear area. In 
terms of the principal stresses for the axially symmetrical case, we have 
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( t 4 - ~ ) % - - o r - - Y =  O, 
Y:= 2Cc~ f - s i n  9), ~:= 2sin TI(t -- sin ~). ( 1 . 2 )  

We use s equation of equilibrium 

d~r/dr "- (dr -- ~ )/r == 0 

and (1.2) to get for the plastic zone that 

~r == Yl~ ~'- Blr ~10+~), 

where B is an arbitrary constant. At the outer boundary rl of the plastic zone, the condi- 
tion applies for damage in the medium under uniaxial compression ~r[rl =--de, where Oc is 
the strength in compression. Then we have for the distribution of o r that 

~r:=Y/~ - - (Y /~ - -  ~c)(r/") ~/0+~). (1.3) 

The material in the plastic zone is assumed to be incompressible: 

- = 4 - ( 1 . 4 )  

(ul is the radial displacement of points in the medium at the boundary of the plastic zone). 
Here we neglect dilatancy effects in order to simplify the problem. 

The system of radial cracks begins at the circular boundary r = rz. The radial stress 
at this boundary is ~c" We calculate the equilibrium with the following assumptions: a) 
there are n cracks of maximal size, b) the state of stress in these cracks is independent 
of the presence of the other shorter ones, and c) to calculate the displacement u~ of the 
boundary one can use equations for the columnar elastic zone, which stimulates the radial- 
crack system. 

The data of [5] can be used to describe the state of stress at the vertices of the n 
longest cracks. Here the calculations are based on the following approximate relationship 
for the intensity coefficient. For cracks extending only slightly from the boundary of the 

plastic zone we have [6] 

K I ~ l,i2dcV~--~ - -  r j ,  ( 1 . 5 )  

where ~ is the radius at which the crack vertex lies. 

For long cracks we have [7, 8] 

KI ~ ~ c q ] / ~ V ~  --  2 P - V ~ / V ~  ( 1 . 6 )  

We assume that the intermediate case is described by (1.5) and (1.6), which give a smaller 
value. The second term in (1.6) incorporates the external rock pressure P. 

To provide a linkup at the outer boundary of the plastic zone, one has to estimate the 
mean displacement of the circular boundary to the system of radial cracks. It follows from 

assumption c above that the mean radial displacement at radius I is 

T h e  a s s u m p t i o n  o f  i n c o m p r e s s i b i l i t y  i n  t h e  c r a c k  z o n e  t h e n  g i v e s  

~ U E 

The  a s s u m p t i o n  a b o u t  t h e  c o l u m n a r  z o n e  g i v e s  

1,~ = U l Q- OCT 1 ( i  - -  ,2 )  In  ( [ / r l ) ,  

We take 

: ( 1 . 7 )  

to complete the description of the radial-crack zone. 

By solving (i.I) with (1.3) on the basis that r = ro and (1.4)-(1.7) and using K I = Kic , 
we can find the equilibrium values of ro, rl, and I with given values for the parameters of 
the medium E, ~c, KIc, v, C, 9, those of the charge roo, Po, YI, Y~, r~/r0o, and the rock 
pressure P. 

We took the following values for lucite: E = 3"109 Pa, o c = l0 s Pa, Kic = i06 Pa'm ~2, 
= 0.3, C = 0, and ~= 30 ~ . 
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Curves 1-3 of Fig. 1 show the results of charges of initial radii roo = i, 2, and 3 mm 
correspondingly. It is evident from Fig. 1 that the sizes of the radial cracks decrease 

monotonically as the rock pressure rises. The steepest fall occurs in the range of pres- 
sures comparatively low for mine conditions (up to 5"i0 s Pa). This may explain the con- 

siderable increase in the specific consumption in drilling explosions even at small depths 

and when there are free surfaces. 

Another feature of Fig. 1 is thedeviation from geometrical similarity in the dimensions 
of the radial cracks as the charge radius varies. For example, the ratio of the crack radius 
to the charge radius increases as the charge radius increases. 

This deviation is the mostpronounced in the absence of rock pressure, and it is largely 
inappreciable at pressures over 5"10 9 Pa. Geometrical similarity applies closely for the 

calculated size of the plasticity zone. 

2. Effects of Gas Penetration into Cracks on the Final Size. It has been shown [9, i0] 
that the penetration of detonation products into the cracks may be appreciable during the 
damage process. This factor also has a substantial effect on the final crack size. 

We consider the following model for the final stage in crack growth produced by an ex- 
plosive charge. In a plane there is a hole of radius ro with radial cracks of length l 
emerging from it. The explosion products propagate in the cracks and exert a pressure p on 
the sides of the cracks and in the charge cavity. The temperature of the explosion products 
is close to that of the medium. The gas pressure p can be determined from the volume of the 
cavity and cracks by means of the gas law if one knows the volume of the gases under normal 
conditions. The external pressure at infinity is P. 

The end to the damage process means that the cracks are in limiting equilibrium and that 
the stress-intensity coefficient at the vertices is equal to the critical value for crack 
halt. This additional condition enables one to find for example the crack length if the 
other parameters are known. 

We now give an approximate solution. We first derive the gas pressure p. For this 

purpose we estimate the volume of the cavity and cracks. We assume that within a circle 
of radius 1 passing through the vertices of the cracks there is a radial stress of magnitude 
p. Then the medium within the circle r < 1 is compressed by the hydrostatic pressure p. Then 
in the case of two-dimensional deformation, the change in the volume of the rock within the 
circle r < 1 is 

A ~ / ! ~  = (2~ , /E )  ( t  - 2~)  ( t  - I -  ~), ~ = ~ (z  ~ - ,,~), 

The displacement of the circle of radius l by the internal pressure p and the external pres- 
sure P leads to an additional change in volume within the circle r < 1 

A% ~ . -~122( l - . .2v) ( l@~' )P/E @2~(p . . . .  P)~2(t-[-%,)/E. 

The t o t a l  i n c r e m e n t  i n  the  gas  volume due to  c a v i t y  e x p a n s i o n  and c r a c k  open ing  f o r  1 ~ 3ro 
is estimated by 
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Av == [4.u/2(t - -  v 2 ) l E l ( p  - -  P) .  

Then if the volume of gas per unit charge length is Vo under normal conditions (p = Pn, 

T = T n), we have 

1' (~r~ q- A,.~)-- PnVo . 

We solve this equation for p to get 

Here 

(2.1) 

7 : piE, P = P IE ,p  o = PnVol(~Er~), 2 = llro, A : 4 ( 1 , -  v~). 

To find the intensity coefficient at the vertices of the cracks loaded from within by 
the pressure p of (2.1) in the presence of the external pressure P, we use the solution to 
Westman's problem [8] on the state of stress in a star of n cracks equal in length distrib- 

uted at identical angles and subject to internal pressure. 

For our treatment, we neglect the size of the cavity by comparison with the crack length 
I -- ro to get for the case of limiting equilibrium that 

or in dimensionless form 

(2.2) 

where Kic = KIc/(E r~o); formula (2.2) relates the parameters of the charge (Vo, ro) and of 

the medium (P,.KIc, E, v) to the crack length I and number of cracks n. 

Formula (2.2) simplifies for P = 0: 

~ i c =  ~tir'~._~__ (2.3) 
nt Al " 

For 4Apol 2 >> i or for example for pc > i0 -=, ~ > 20 

- r-- 21/-% (2.4) 

Figure 2 shows the results from (2.3) ~ith n = 5 and v = 0.3 in the form of isolines for 

I/ro in the plane of KIc = KIc/(E r~o), Pc = pnVo/(zEr~) on a logarithmic scale. 

One can trace the effects of P on the size of the damage zone from Fig. 3, which shows 

graphs constructed from (2.2) for various P relating KIc to ~/ro for Pc = i0 -=- 

These calculations enable one to estimate the maximum crack size for various charges and 
for a wide range of rock parameters for the case where the explosion is performed under con- 
ditions homogeneous with respect to angle and the number of cracks of maximumlength is close 

to 5. 

The approximate limits to the parameters are as follows. Young's modulus E for rocks 
varies over the range i09-i0 ~I Pa, while Poisson's ratio is ~ = 0.2-0.4. At present we have 

little data onKic for rocks. We give here the results of [ii] according to which Kic = 3 MPa" 
m~> for sandstone and marble. The rock pressure in most cases varies from 0 up to 5,1Q 7 Pa. 
The gas production from commercial explosives is [12] 100-700 liter/kg under normal conditions. 

As an example, we calculate the dimensions of the cracks from the explosion of a charge 
of PZhV-20 explosive with a density of 1 g/cm 3 placed in a bored hole of diameter 80 mm in 
a sandstone under conditions of rock pressure P = 1.5"107 Pa. We find the values of the di- 

mensionless parameters for 

= 3 . 1 o  
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From (2.2) we get ~ = 155, I = 6.2 m. 

To evaluate the likeliness of the results, we compare them with some test data. In prac- 
tice, one can disrupt a sandstone by exploding a series of charges of diameter 40 mm involv- 
ing a consumption of explosive of 40 g/m (4 turns of DSh with sand filling). The distances 
between the charges should be 0.5 m. In that case, Po = 5"10 -s, KI c = 7"10 -a, and from (2.2) 
we have I = 160ro = 3.2 m. It is evident that the calculated crack lengths are much greater 
than the distances between charges used in practice, because the theory gives an overestimate 
of crack sizes, since it is assumed that all the detonation products operate in the final 
phase of damage. In fact, some of the gas may penetrate into the rock during the damage and 
be absorbed or may simply escape. These factors have a marked effect on the final size of 
the cracks. The above theoretical estimates could be revised by incorporating these factors, 
if they occur. 

To elucidate the effects of gas penetration on the size, we used the nomograms of Fig. 
2 to determine the crack lengths of a trotyl charge in Lucite for the parameters used in Fig. 
1 without penetration. The penetration scheme gave crack lengths about two times larger than 
those without penetration. 

3. Measurement of Radial-Crack Zone Parameters Due to the Explosion of a Long Charge in 
Lucite. The explosions were performed in sheet Lucite of thicknesses 4.2-220 mm. The explo- 
sive was TEN. The charge was placed in a hole drilled in the sheet perpendicular to the 
plane. 

Figure 4 shows the typical disposition of the charge in a sheet for the thickness ~ 70 
mm; the charge was detonated electrically using lead azide. The plug was produced with epox- 
ide resin placed in a channel bearing an M5 thread. 

The cracks were divided by length into groups: the longest ones, shorter ones, and so on. 
For each group we derived the mean crack size and the number of cracks of that length or range. 
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TABLE I 

I 
" ~  Iq, rag/. IH = 

=m 

77 

Plug 
r  ~ [Crack 

.,=m~H ~.IE~=l =~ l/n ,-ram 
~J~ ~ o  = ., 

n l  n 

2,4 I 9--ill 25 

% 

t 75 I -- 225--275 3--3,6 

2 .968 1t0 -- 2 ,4 '  I 'i23-i4110027 324--378300 3,3--3,9 

4 102 110 -- 2,8 8--9 6(I 480--540 4,7--5,3 

8 25 �9 200 

6 67 220 epoxide 2,4 8-41011 60 480--600 6--7,2 
iO0 400 

7 54 I 
Table 1 collects the data, including the product of the number of cracks and the length 

as determined from the above n~ n. According to (2.4), this product is a constant for each 

explosion. 

It follows from (2.4) that if one uses a single material and explosive, the product of 
the crack length by the number of cracks should be constant when this quantity is divided 
by the amount of explosive per unit length (nln/q); this quantity is also given in the table. 
The results sho~ that n~ n is constant for each explosion. Figure 5 gives data on nln/q, which 
show that nZn/q increases monotonically with the lucite thickness. One naturally expects 
that this effect will become less as the sheet thickness increases. To compare the data with 
the above theory, we calculated the failure parameters for a TEN charge of diameter 2.4 mm in 
Lucite. For this material, E = 3"109 Pa and KIc = 1"106 Pa'm*/2. The gas release from TEN is 

500 liters/kg. 

The consumption of explosive was 0.067 g/cm. The data imply �9 Klc= 10-2, po = 0.025, 
and if the gases penetrate into the cracks, then I/r0 = 180 according to Fig. 2, so the cal- 

culated value is nln/q = 16. 

This value is represented by the dashed line in Fig. 5. For certain explosions we cal- 
culated the amount of gas necessary to produce the damage actually found. The data are given 
in Fig. 5 as the percentage of the amount of gas actually released, and the values are ~uite 

likely. 

Another estimate can be made of the size of the radial-crack zone by reference to the 
model of section i, in which it was assumed that the detonation products are retained in the 
cavity and do not enter the cracks. With this assumption, Fig. i shows that a charge of diam- 
eter 2.4 mm in Lucite gives five cracks of size l15ro = 138 mm, and then nln/q = i0, which 
is shown as the dot-dash line in Fig. 5. It is evident that the experimental data approach 

this level quite closely. 

One expects that the experimental data will approach the upper theoretical asymptote as 
the plate thickness increases further. This confirms the theoretical estimates of Sections 

1 and 2. 
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NUMERICAL MODELING OF THE PROCESS OF PENETRATION OF A RIGID BODY 

OF REVOLUTION INTO AN ELASTOPLASTIC BARRIER 

V. I. Kondaurov, I. B. Petrov, 
and A. S. Kholodov 

UDC 539.3 

We will consider the axisymmetric problem of the penetration of an absolutely rigid body 
of revolution into a deformable barrier of finite thickness. The rheology of the barrier 
material is described by the equations of flow of elastoplastic bodies. Important aspects 
of these problems are the sharply expressed wave character of the solution and the large 
deformations suffered by the barrier. Penetration problems have been the subject of a large 
number of experimental investigations, which have been used as a basis for studying the ef- 
fect of various controlling parameters and observable effects and constructing various ap- 
proximate methods of calculating penetration processes. However, a fully detailed picture 
of the processes of interaction of projectiles and deformable targets can be obtained only 
by means of the numerical solution of problems of this kind on the basis of various rheologi- 
cal models and a subsequent comparison with the experimental results in order to refine the 
mathematical model. 

The complex nature of these problems imposes rigid constraints on the choice of a nu- 
merical method of solution, the choice of independent variables, etc. In particular, for 
large penetration depths the use of traditional Lagrangian variables leads to considerable 
distortions (and often to a loss of regularity) of the difference net and the need to re- 
construct it periodically (which may lead to a significant loss of accuracy). The use of 
fixed Eulerian coordinates leads to difficulties in formulating the boundary conditions at 
the surface of the barrier and the need to choose a difference net with a large number of 
nodes in order to obtain accemtable accuracy in a continuous calculation without explicit 
isolation of the barrier surface. Both these approaches have been used in the numerical 
solution of problem s of this kind, for example, in [1-5]. IIere we shall use a moving coor- 
dinate system (tied to the upper and lower edges of the barrier) and the net-characteristic 
method [6], which allows the most natural construction of the computational algorithm near 
the edges of the region of integration and to a certain extent makes it possible to take into 
account the region of variation and the wave character of the solution. This explicit scheme 
of the first order of accuracy is one of those with a positive approximation (monotonic and 
majorant schemes, to use another terminology) and, as shown in [7], has minimum approxima- 
tion viscosity among the explicit two-layer schemes of this kind, which is an important 
property in the continuous calculation of nonsmooth (discontinuous) solutions without ex- 
plicit isolation of the surfaces of discontinuity [8]. 
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